Automatic Segmentation of Whole-Body Bone Scintigrams as a Preprocessing Step for Computer Assisted Diagnostics

نویسندگان

  • Luka Sajn
  • Matjaz Kukar
  • Igor Kononenko
  • Metka Milcinski
چکیده

Bone scintigraphy or whole-body bone scan is one of the most common diagnostic procedures in nuclear medicine used in the last 25 years. Pathological conditions, technically poor quality images and artifacts necessitate that algorithms use sufficient background knowledge of anatomy and spatial relations of bones in order to work satisfactorily. We present a robust knowledge based methodology for detecting reference points of the main skeletal regions that simultaneously processes anterior and posterior whole-body bone scintigrams. Expert knowledge is represented as a set of parameterized rules which are used to support standard image processing algorithms. Our study includes 467 consecutive, non-selected scintigrams, which is the largest number of images ever used in such studies to our knowledge. Automatic analysis of wholebody bone scans using our knowledge based segmentation algorithm gives more accurate and reliable results than previous studies. Obtained reference points are used for automatic segmentation of the skeleton, which is used for automatic (machine learning) or manual (expert physicians) diagnostics. Preliminary experiments show that an expert system based on machine learning closely mimics the results of expert physicians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computerized segmentation of whole-body bone scintigrams and its use in automated diagnostics

Bone scintigraphy or whole-body bone scan is one of the most common diagnostic procedures in nuclear medicine used in the last 25 years. Pathological conditions, technically poor image resolution and artefacts necessitate that algorithms use sufficient background knowledge of anatomy and spatial relations of bones in order to work satisfactorily. A robust knowledge based methodology for detecti...

متن کامل

Computerized segmentation and diagnostics of whole-body bone scintigrams

Bone scintigraphy or whole-body bone scan is one of the most common diagnostic procedures in nuclear medicine. Since expert physicians evaluate images manually some automated procedure for pathology detection is desired. A robust knowledge based methodology for segmenting body scans into the main skeletal regions is presented. The algorithm is simultaneously applied on anterior and posterior wh...

متن کامل

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

A Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images

Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005